quarta-feira, 14 de outubro de 2009



O que é a gripe suína?


A gripe suína ou gripe porcina é uma doença respiratória aguda altamente contagiosa freqüente em porcos. Estes animais podem ser infectados, ao mesmo tempo, por mais de um tipo de vírus, o que possibilita que os genes dos vírus se misturem.
Por isso, a suspeita dos especialistas é que a doença que está contaminado pessoas atualmente seja provocada por um vírus que contém genes de várias origens – chamado de recombinante (veja como funciona a recombinação).
É um vírus que contém a mistura de genes que provocam a gripe suína, a aviária e a humana.

Contaminação

As primeiras pessoas infectadas provavelmente tiveram contato com porcos, em fazendas e agropecuárias, por exemplo. No entanto agora o contágio está ocorrendo principalmente pelo contato próximo entre uma pessoa e outra, especialmente pela tosse ou espirros – daí o motivo do uso das máscaras.
Não foram identificados quaisquer tipos de contaminação em relação ao consumo de carne suína ou os seus derivados. O vírus da gripe suína não resiste ao cozimento em temperatura superior a 70ºC, como se recomenda para a preparação de carne de porco e outras carnes.

Epidemiologistas estão especialmente preocupados com o fato de os mortos identificados até agora serem adultos jovens, o grupo normalmente menos vulnerável à gripe. É possível que idosos e crianças tenham resistido à doença por terem sido vacinados.
Sintomas
Assim como a gripe humana comum, a suína apresenta os sintomas: febre (superior a 39ºC), cansaço, fadiga, dores pelo corpo, corizas e tosse. Existe vacina para os porcos, porém ainda não se descobriu uma que possa ser utilizadas pelos humanos.
De acordo com a OMS, o medicamento antiviral Tamiflu, em testes iniciais mostrou-se efetivo contra o vírus da gripe suína. O tratamento, para funcionar, tem de ser feito nas primeiras 48h.

Diagnóstico
O diagnóstico é feito da mesma maneira da gripe comum. Quando observados os sintomas da doença, recolhe-se material para análise, normalmente o muco do nariz e da boca.
Em uma pessoa com suspeita, primeiramente se faz o chamado teste rápido para detecção do vírus influenza. É um kit que permite identificar a presença do vírus influenza. Se o teste rápido der positivo, o material colhido é mandado para um laboratório especializado, e ali se identifica se o vírus encontrado é ou não da gripe suína.
Imunização
O infectologista André Lomar, defende que a vacinação habitual contra gripe (influenza) não combate o vírus suíno, mas pode amenizar muito discretamente os sintomas. "Ainda não há vacina específica e para ser feita levaria no mínimo seis meses", disse o infectologista numa previsão positiva da comunidade científica.

Rapidinhas sobre a gripe suína

Porque a gripe suína mata?

Esse vírus tem a capacidade de atingir os pulmões e pode não só causar uma pneumonia (que leva à morte pela insuficiência respiratória) como predispõe o pulmão a ser infectado por outras bactérias.
Uma pessoa com a gripe suína pode se curar?

Pode.


A maioria dos casos está sendo curado espontaneamente. Por enquanto ainda não se sabe o percentual de cura. Até agora, a gripe suína está sendo menos letal do que a gripe aviária, mas se espalha com mais rapidez, porque é transmitida de humano para humano.

Se uma pessoa é contaminada uma vez, faz tratamento e melhora, ela pode ser contaminada novamente?

Provavelmente não, porque ela adquire uma proteção contra esse tipo de vírus da gripe. Mas não contra outros tipos.

A pessoa fica com o vírus “para sempre” mesmo depois de melhorar?

Não. O vírus infecta a pessoa, causa sintomas, ou não, desaparece e depois deixa essa pessoa com
uma proteção contra ele (anticorpos).

Como eu posso fazer para me prevenir da gripe?

Mantenha hábitos de higiene, como lavar as mãos.

Ao tossir ou espirrar cubra a boca e o nariz com um lenço, de preferência descartável

Evite o contato direto com pessoas doentes.


Também não compartilhe alimentos, copos, toalhas e objetos de uso pessoal

Evitar tocar olhos nariz e boca.








Fontes:
Estadão online - Surto de gripe no México e EUA tem potencial de pandemia - 25/04/2009
BBC Brasil - OMS: Gripe suína pode virar pandemia - 25/04/2009
JC online - Tamiflu parece ser efetivo contra gripe suína, diz OMS - 25/04/2009
Jornal Zero Hora- pag. 4-6- 29/04/2009
Gente eu nunca mais achei algo polemico para postar

Apos varias pesquisas encontrei um material que pode ser interesante

quarta-feira, 5 de agosto de 2009

ate a proxima semana
O Sistema Solar
O sistema solar é um conjunto de planetas, asteróides e cometas que giram ao redor do sol. Cada um se mantém em sua respectiva órbita em virtude da intensa força gravitacional exercida pelo astro, que possui massa muito maior que a de qualquer outro planeta.
Os corpos mais importantes do sistema solar são os oito planetas que giram ao redor do sol, descrevendo órbitas elípticas, isto é, órbitas semelhantes a circunferências ligeiramente excêntricas.
O sol não está exatamente no centro dessas órbitas, como pode-se ver na figura, razão pela qual os planetas podem encontrar-se, às vezes, mais próximos ou mais distantes do astro.
Origem do Sistema Solar
O sol e o Sistema Solar tiveram origem há 4,5 bilhões de anos a partir de uma nuvem de gás e poeira que girava ao redor de si mesma. Sob a ação de seu próprio peso, essa nuvem se achatou, transformando-se num disco, em cujo centro formou-se o sol. Dentro desse disco, iniciou-se um processo de aglomeração de materiais sólidos, que, ao sofrer colisões entre si, deram lugar a corpos cada vez maiores, os outros planetas.
A composição de tais aglomerados relacionava-se com a distância que havia entre eles e o sol. Longe do astro, onde a temperatura era muito baixa, os planetas possuem muito mais matéria gasosa do que sólida, é o caso de Júpiter, Saturno, Urano e Netuno. Os planetas perto dele, ao contrário, o gelo evaporou, restando apenas rochas e metais, é o caso de Mercúrio, Vênus, Terra e Marte.
Os componentes do Sistema Solar
O sol
O Sol é a fonte de energia que domina o sistema solar. Sua força gravitacional mantém os planetas em órbita e sua luz e calor tornam possível a vida na Terra. A Terra dista, em média, aproximadamente 150 milhões de quilômetros do Sol, distância percorrida pela luz em 8 minutos. Todas as demais estrelas estão localizadas em pontos muito mais distantes.
As observações científicas realizadas indicam que o Sol é uma estrela de luminosidade e tamanho médios, e que no céu existem incontáveis estrelas maiores e mais brilhantes, mas para nossa sorte, a luminosidade, tamanho e distância foram exatos para que o nosso planeta desenvolvesse formas de vida como a nossa.
O sol possui 99,9% da matéria de todo o Sistema Solar. Isso significa que todos os demais astros do Sistema juntos somam apenas 0,1%.
Composição do Sol
O Sol é uma enorme esfera de gás incandescente composta essencialmente de hidrogênio e hélio, com um diâmetro de 1,4 milhões de quilômetros. O volume do Sol é tão grande que em seu interior caberiam mais de 1 milhão de planetas do tamanho do nosso. Para igualar seu diâmetro, seria necessário colocar 109 planetas como a Terra um ao lado do outro. No centro da estrela encontra-se o núcleo, cuja temperatura alcança os 15 milhões de graus centígrados e onde ocorre o processo de fusão nuclear por meio do qual o hidrogênio se transforma em hélio. Já na superfície a temperatura do Sol é de cerca de 6.000 graus Celsius.
Os planetas
Os planetas não produzem luz, apenas refletem a luz do Sol, que é a estrela do Sistema Solar.
Teorias afirmam que os planetas também foram formados a partir de porções de massa muito quente e que todos estão de resfriando. Alguns, entre eles a Terra, já se resfriaram o suficiente para apresentar a superfície sólida.
Um corpo celeste é considerado um planeta quando, além de não ter luz própria, gira ao redor de uma estrela.
Os planetas têm forma aproximadamente esférica. Os seus movimentos principais são o de rotação e o de translação. Cada planeta possui um eixo de rotação em relação a Sol, o mais inclinado deles é o planeta-anão Plutão, pois seu eixo de rotação em relação ao Sol é de 120º, olhe a figura.
Movimento de Rotação
No movimento de rotação, os planetas giram em torno do seu próprio eixo, uma linha imaginária que passa pelo seu centro. O observador terrestre tem dificuldade de perceber o movimento de rotação da Terra. Para isso deve-se notar que o Sol, do amanhecer ao anoitecer, parece se mover da região leste em sentido oeste. O mesmo acontece, à noite, com a Lua, as estrelas e demais astros que vemos no céu.
O movimento de rotação da Terra dura, aproximadamente 24horas - o que corresponde a um dia. A Terra, por ser esférica, não é iluminada toda de uma vez só. Conforme a Terra gira em torno do seu eixo, os raios de luz solar incidem sobre uma parte do planeta e a outra fica à sombra.
O ciclo dos dias e da noite ocorrem graças a rotação. Enquanto o planeta está girando sobre seu próprio eixo é dia nas regiões que estão iluminadas pelo Sol (período claro) e, simultaneamente, é noite nas regiões não iluminadas (período escuro).
Movimento de Translação
O movimento de translação é executado pelos planetas ao redor do Sol, e o tempo que levam para dar uma volta completa é denominado período orbital. No caso da Terra esse período leva cerca de 365 dias e aproximadamente 6 horas para se completar. A Terra, no seu movimento de translação, forma uma elipse pouco alongada (bem próxima a circular). Já o planeta Netuno traça a sua órbita elíptica de forma bastante alongada.
Em razão do movimento de translação e da posição de inclinação do eixo da Terra, cada hemisfério fica, alternadamente, mais exposto aos raios solares durante um período do ano. Isso resulta nas quatro estações do ano: verão, outono, inverno e primavera. Nos meses de dezembro a março, o Hemisfério Sul - localizado ao sul da linha do Equador - fica mais exposto ao Sol. É quando os raios solares incidem perpendicularmente sobre pelo menos alguns pontos do Hemisfério Sul. É verão nesse hemisfério. Depois de seis meses, nos meses de junho a setembro, a Terra já percorreu metade da sua órbita. O Hemisfério Norte - localizado ao norte da linha do Equador - fica mais exposto ao Sol e, assim, os raios solares incidem perpendicularmente sobre pelo menos alguns pontos do Hemisfério Norte. É verão no Hemisfério Norte.
Enquanto é verão no Hemisfério Norte com os dias mais longos e as noites mais curtas, é inverno no Hemisfério Sul, onde os dias tornam-se mais curtos e as noites mais longas. E vice-e-versa.
Em dois períodos do ano (de março a junho e de setembro a dezembro) ha posições da Terra, na sua órbita, em que os dois hemisférios são iluminados igualmente. É quando ocorrem, de forma alternada nos dois hemisférios, as estações climáticas primavera e outono.
As estações do ano são invertidas entre os hemisférios Sul e Norte. Por isso é possivel, numa mesma época do ano, por exemplo, pessoas aproveitarem o verão numa praia no Hemisfério Sul, enquanto outras se agasalharem por causa de uma nevasca de inverno no Hemisfério Norte.
Nas regiões perto da linha do Equador, tanto em um hemisfério quanto no outro, ocorre constantemente a incidência dos raios do Sol, faz calor durante todo o ano. Há apenas a estação das chuvas e a estação da seca.
Em virtude da "curvatura da Terra" e da inclinação do eixo de rotação da Terra em relação ao seu plano de órbita, os pólos recebem raios de Sol bastante inclinados. Por um longo período do ano, os raios solares não chegam aos pólos; por isso essas são regiões muito frias.
Para os moradores dessas regiões, só há duas estações climáticas:
Uma que chamam inverno, ou seja, o longo período em que os raios solares não atingem o pólo;
outra chamada verão, quando não acontece o pôr-do-sol durante meses.
Os planetas do Sistema Solar
São oito os planetas clássicos do Sistema Solar. Na ordem de afastamento do Sol, são eles: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno.
A partir dos avanços tecnológicos que possibilitaram a observação do céu com instrumentos ópticos como lunetas, telescópios e outros, os astrônomos vêm obtendo informações cada vez mais precisas sobre os planetas e seus satélites. Vamos conhecer um pouco a respeito de cada um desses oito planetas do Sistema Solar.
Os planetas
Os planetas não produzem luz, apenas refletem a luz do Sol, que é a estrela do Sistema Solar.
Teorias afirmam que os planetas também foram formados a partir de porções de massa muito quente e que todos estão de resfriando. Alguns, entre eles a Terra, já se resfriaram o suficiente para apresentar a superfície sólida.
Um corpo celeste é considerado um planeta quando, além de não ter luz própria, gira ao redor de uma estrela.
Os planetas têm forma aproximadamente esférica. Os seus movimentos principais são o de rotação e o de translação. Cada planeta possui um eixo de rotação em relação a Sol, o mais inclinado deles é o planeta-anão Plutão, pois seu eixo de rotação em relação ao Sol é de 120º, olhe a figura.
Movimento de Rotação
No movimento de rotação, os planetas giram em torno do seu próprio eixo, uma linha imaginária que passa pelo seu centro. O observador terrestre tem dificuldade de perceber o movimento de rotação da Terra. Para isso deve-se notar que o Sol, do amanhecer ao anoitecer, parece se mover da região leste em sentido oeste. O mesmo acontece, à noite, com a Lua, as estrelas e demais astros que vemos no céu.
O movimento de rotação da Terra dura, aproximadamente 24horas - o que corresponde a um dia. A Terra, por ser esférica, não é iluminada toda de uma vez só. Conforme a Terra gira em torno do seu eixo, os raios de luz solar incidem sobre uma parte do planeta e a outra fica à sombra.
O ciclo dos dias e da noite ocorrem graças a rotação. Enquanto o planeta está girando sobre seu próprio eixo é dia nas regiões que estão iluminadas pelo Sol (período claro) e, simultaneamente, é noite nas regiões não iluminadas (período escuro).
Movimento de Translação
O movimento de translação é executado pelos planetas ao redor do Sol, e o tempo que levam para dar uma volta completa é denominado período orbital. No caso da Terra esse período leva cerca de 365 dias e aproximadamente 6 horas para se completar. A Terra, no seu movimento de translação, forma uma elipse pouco alongada (bem próxima a circular). Já o planeta Netuno traça a sua órbita elíptica de forma bastante alongada.
Em razão do movimento de translação e da posição de inclinação do eixo da Terra, cada hemisfério fica, alternadamente, mais exposto aos raios solares durante um período do ano. Isso resulta nas quatro estações do ano: verão, outono, inverno e primavera. Nos meses de dezembro a março, o Hemisfério Sul - localizado ao sul da linha do Equador - fica mais exposto ao Sol. É quando os raios solares incidem perpendicularmente sobre pelo menos alguns pontos do Hemisfério Sul. É verão nesse hemisfério. Depois de seis meses, nos meses de junho a setembro, a Terra já percorreu metade da sua órbita. O Hemisfério Norte - localizado ao norte da linha do Equador - fica mais exposto ao Sol e, assim, os raios solares incidem perpendicularmente sobre pelo menos alguns pontos do Hemisfério Norte. É verão no Hemisfério Norte.
Enquanto é verão no Hemisfério Norte com os dias mais longos e as noites mais curtas, é inverno no Hemisfério Sul, onde os dias tornam-se mais curtos e as noites mais longas. E vice-e-versa.
Em dois períodos do ano (de março a junho e de setembro a dezembro) ha posições da Terra, na sua órbita, em que os dois hemisférios são iluminados igualmente. É quando ocorrem, de forma alternada nos dois hemisférios, as estações climáticas primavera e outono.
As estações do ano são invertidas entre os hemisférios Sul e Norte. Por isso é possivel, numa mesma época do ano, por exemplo, pessoas aproveitarem o verão numa praia no Hemisfério Sul, enquanto outras se agasalharem por causa de uma nevasca de inverno no Hemisfério Norte.
Nas regiões perto da linha do Equador, tanto em um hemisfério quanto no outro, ocorre constantemente a incidência dos raios do Sol, faz calor durante todo o ano. Há apenas a estação das chuvas e a estação da seca.
Em virtude da "curvatura da Terra" e da inclinação do eixo de rotação da Terra em relação ao seu plano de órbita, os pólos recebem raios de Sol bastante inclinados. Por um longo período do ano, os raios solares não chegam aos pólos; por isso essas são regiões muito frias.
Para os moradores dessas regiões, só há duas estações climáticas:
Uma que chamam inverno, ou seja, o longo período em que os raios solares não atingem o pólo;
outra chamada verão, quando não acontece o pôr-do-sol durante meses.
Os planetas do Sistema Solar
São oito os planetas clássicos do Sistema Solar. Na ordem de afastamento do Sol, são eles: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno.
A partir dos avanços tecnológicos que possibilitaram a observação do céu com instrumentos ópticos como lunetas, telescópios e outros, os astrônomos vêm obtendo informações cada vez mais precisas sobre os planetas e seus satélites. Vamos conhecer um pouco a respeito de cada um desses oito planetas do Sistema Solar.
Mercúrio
É o planeta mais próximo ao Sol e o menor do Sistema Solar. É rochoso, praticamente sem atmosfera, e a sua temperatura varia muito, chegando a mais de 400ºC positivos, no lado voltado para o Sol, e cerca de 180ºC negativos, no lado oposto. Mercúrio não tem satélite. É o planeta que possui um movimento de translação de maior velocidade (o ano mercuriano tem apenas 88 dias). O aspecto da superfície é parecido com o da nossa Lua, toda coberta de crateras, originadas da colisão com corpos celestes.
Mercúrio
É o planeta mais próximo ao Sol e o menor do Sistema Solar. É rochoso, praticamente sem atmosfera, e a sua temperatura varia muito, chegando a mais de 400ºC positivos, no lado voltado para o Sol, e cerca de 180ºC negativos, no lado oposto. Mercúrio não tem satélite. É o planeta que possui um movimento de translação de maior velocidade (o ano mercuriano tem apenas 88 dias). O aspecto da superfície é parecido com o da nossa Lua, toda coberta de crateras, originadas da colisão com corpos celestes.
Júpiter
A massa de Júpiter é duas vezes e meia a massa combinada de todos os outros corpos do sistema solar à exceção do Sol.
Júpiter é o maior planeta do sistema solar, e o primeiro dos gigantes gasosos. Tem um diâmetro 11 vezes maior que o diâmetro da Terra e uma massa 318 vezes superior. Demora quase 12 anos a completar uma órbita mas tem um período de rotação invulgarmente rápido: 9h 50m 28s sendo o planeta com a rotação mais rápida do sistema solar. Embora tenha um núcleo de ferro, quase todo o planeta é uma imensa bola de hidrogênio e um pouco de hélio. A temperatura da superfície é de cerca de -150ºC.
As sondas Voyager 1 e 2 mostraram que Júpiter também possui anéis, tal como os outros gigantes gasosos. No entanto, se para observarmos os anéis de Saturno basta um telescópio amador uma vez que estes são constituídos principalmente por pequenos detritos de gelo que refletem muito a luz, os anéis de Júpiter parecem-nos quase invisíveis, uma vez que são compostos por partículas rochosas de pequenas dimensões que refletem muito pouco a luz. Julga-se que estes detritos são o resultado de colisões de meteoritos com os 4 satélites mais próximos do planeta.
Os satélites
Júpiter tem pelo menos 63 satélites identificados. Os 4 maiores, e mais importantes, são conhecidos como as luas galileanas, assim chamadas por terem sido descobertas por Galileu Galilei (1564-1642) quando observou Júpiter com um telescópio que ele próprio construiu. São elas: Io, Europa, Ganymede e Callisto. Historicamente, a descoberta destas luas constituiu uma das primeiras provas irrefutáveis que a Terra não estava no centro do Universo.
Saturno
É o segundo maior planeta do nosso sistema solar. É famoso por seus anéis, que podem ser vistos com o auxílio de pequenos telescópios. Os anéis são feitos com pedaços de gelo e rochas. A temperatura média da superfície do planeta é de -140ºC. Saturno é formado basicamente por hidrogênio e pequena quantidade de hélio.
O movimento de rotação em volta do seu eixo demora cerca de 10,5 horas, e cada revolução ao redor do Sol leva 30 anos terrestres.
Tem um número elevado de satélites, 60 descobertos até então, dos quais 35 possuem nomes, e está cercado por um complexo de anéis concêntricos, composto por dezenas de anéis individuais separados por intervalos, estando o mais exterior destes situado a 138 000 km do centro do planeta geralmente compostos por restos de meteoros e cristais de gelo. Alguns deles têm o tamanho de uma casa.
Urano
Urano é o sétimo planeta do sistema solar, situado entre Saturno e Netuno. A característica mais notável de Urano é a estranha inclinação do seu eixo de rotação, quase noventa graus em relação com o plano de sua órbita; essa inclinação não é somente do planeta, mas também de seus anéis, satélites e campo magnético. Urano tem a superfície a mais uniforme de todos os planetas por sua característica cor azul-esverdeada, produzida pela combinação de gases em sua atmosfera, e tem anéis que não podem ser vistos a olho nu; além disso, tem um anel azul, que é uma peculiaridade planetária. Urano é um de poucos planetas que têm um movimento de rotação retrógrado, similar ao de Vênus
Tem 27 satélites ao seu redor e um fino anel de poeira.
Netuno
Orbitando tão longe do Sol, Netuno recebe muito pouco calor. A sua temperatura superficial média é de -218 °C. No entanto, o planeta parece ter uma fonte interna de calor. Pensa-se que isto se deve ao calor restante, gerado pela matéria em queda durante o nascimento do planeta, que agora irradia pelo espaço fora. A atmosfera de Netuno tem as mais altas velocidades de ventos no sistema solar, que são acima de 2000 km/h; acredita-se que os ventos são amplificados por este fluxo interno de calor. A estrutura interna lembra a de Urano - um núcleo rochoso coberto por uma crosta de gelo, escondida no profundo de sua grossa atmosfera. Os dois terços internos de Netuno são compostos de uma mistura de rocha fundida, água, amônia líquida e metano. A terça parte exterior é uma mistura de gases aquecidos composta por hidrogênio, hélio, água e metano.
Embora não sejam visíveis nas fotografias do telescópio espacial Hubble, Netuno faz parte dos planetas gigantes que possuem um complexo sistema de anéis. Possui cinco anéis principais e sua descoberta se deve a uma observação efetuada ainda em 1984 a bordo de um avião U2 que acompanhou o deslocamento do planeta por algumas horas durante a ocultação de uma estrela. Neptuno tem 13 luas conhecidas. A maior delas é Tritão, descoberta por William Lassell apenas 17 dias depois da descoberta de Netuno.
Netuno, o gigante azul.
E Plutão?
Plutão que recebera o nome do deus dos infernos, da mitologia greco-latina, foi classificado como o nono planeta do Sistema Solar. Descoberto em 1930, pelo astrônomo norte-americano Clyde Tombaugh, esse astro foi sempre motivo de acirrados debates. Afinal, as características do planetóide, entre outras a excentricidade de sua órbita inclinada, em que certos períodos cruza a órbita de Netuno, já indicavam que dificilmente ela poderia permanecer na elite dos planetas do nosso Sistema. Realmente, 76 anos depois, a UAI resolveu reclassificar o astro do grupo de planetas-anões.
Caronte continua a ser considerado satélite de Plutão. Entretanto, para alguns astrônomos eles são astros gêmeos, e esse é um debate que pode ser, a qualquer momento retomado pela União Astronômica Internacional. Será Coronte promovido a planeta-anão?
Outros astros do Sistema Solar
Satélites
Até 1610 o único satélite conhecido era o da Terra - a Lua. Naquela ocasião, Galileu Galilei (1564-1642), com a sua luneta, descobriu satélites na órbita do planeta Júpiter. Hoje se sabe da existência de dezenas de satélites.
Na Astronomia, satélite natural é um corpo celeste que se movimenta ao redor de um planeta graças a força gravitacional. Por exemplo, a força gravitacional da Terra mantém a Lua girando em torno do nosso planeta.
Os satélites artificiais são objetos construídos pelos seres humanos. O primeiro satélite artificial foi lançado no espaço em 1957. Atualmente há vários satélites artificiais ao redor da Terra.
O termo "lua" pode ser usado como sinônimo de satélite natural dos diferentes planetas.
Cometas
Um cometa é o corpo menor do sistema solar, semelhante a um asteróide, possui uma parte sólida, o núcleo, composto por rochas, gelo e poeira e têm dimensões variadas (podendo ter alguns quilômetros de diâmetro). Geralmente estão distantes do Sol e, nesse caso, não são visíveis. Eles podem se tornar visíveis à medida que, na sua longa trajetória, se aproximam do Sol sublimando o gelo do núcleo e liberando gás e poeira para formar a cauda e a "cabeleira" em volta do núcleo. O mais conhecido dele é o Halley, que regularmente passa pelo nosso Sistema Solar. De 76 em 76 anos, em média, ele é visível da Terra. Ele passou pela região do Sistema Solar próxima do nosso planeta, em 1986, o que possibilitou a sua visibilidade, portanto, o Halley deverá estar de volta em 2062.
Asteróides
Um asteróide é um corpo menor do sistema solar, geralmente da ordem de algumas centenas de quilômetros apenas. São milhões de corpos rochosos que giram ao redor do Sol. Da Terra, só podem ser observados por meio de telescópio. Entre as órbitas dos planetas Marte e Júpiter, encontra-se um cinturão de asteróides e outro após a órbita de Netuno.
Meteoróides, meteoros e meteoritos
São fragmentos de rochas que se formam a partir de cometas e asteróides. O efeito luminoso é produzido quando fragmentos de corpos celestes incendeiam-se em contato com a atmosfera terrestre devido ao atrito. Esses rastros de luz são denominados meteoros e popularmente são conhecidos como estrelas cadentes, mas não são estrelas. Quando caem sobre a Terra, atraídos pela força gravitacional, são chamados de meteoritos. Na maioria das vezes, eles são fragmentos de rochas ou de ferro. Os meteoritos tem forma variada e irregular, e o tamanho pode variar de microfragmentos a pedaços de rochas de alguns metros de diâmetro.
O maior meteorito brasileiro (pesando mais de 5000 quilos), o Bendegó, foi encontrado no interior da Bahia em 1784 e encontra-se em exposição no Museu Nacional do Rio de Janeiro.
tb irei postar sobre sistema solar


O Universo

O que é universo?

Em noites sem lua, em locais pouco iluminados por casas, ruas e edifícios, podemos ver uma infinidade de pequenos pontos luminosos no céu: são as estrelas. Ao observar o céu a olho nú, conseguimos ver uma parte mínima do que chamamos de Universo. Já na observação do céu feita com o auxílio de um telescópio, é possível perceber que o número de corpos celestes é muito maior e também pode-se ver detalhes das formas e da cor dos astros. A atmosfera da Terra, contudo, limita a atuação dos telescópios terrestres, por este motivo são utilizados telescópios espaciais, como o telescópio Hubble, para as pesquisas astronômicas mais sofisticadas. Além destes instrumentos para o estudo do Universo, os cientistas contam com equipamentos de informática para cálculos, tratamento de dados e imagens recebidas dos telescópios, simulações etc.

Esses recursos possibilitaram responder à questão - o que compõe o Universo?

O Universo é composto por aglomerados de galáxias, com nebulosas, estrelas, cometas, planetas e seus satélites, e tudo que neles existe - no caso do planeta Terra, por exemplo, plantas, animais, rochas, água, ar etc.


Mas de onde surgiu o Universo? E as estrelas? E a Terra?

O surgimento do Universo

Existem várias explicações sobre a origem do Universo. Há, sobre esse assunto, as explicações religiosas e as científicas. Trataremos aqui da visão científica, ou seja, de como os cientistas procuram explicar os fenômenos que observam no Universo. Não se sabe ao certo , mas os cientistas calculam que o Universo tenha começado a existir há cerca de 15 bilhões de anos. Parece impossível afirmar uma coisa dessas - 15 bilhões de anos é muito tempo!

O que levou os cientistas a pensarem que o Universo tenha tido um começo?

O telescópio Hubble, consegue captar a luz de estrelas que mostra como elas eram a bilhões de anos. Analisando a luz das estrelas, é possível saber a velocidade com que elas estão se afastando ou se aproximando de nós, sua composição química, idade, temperatura e massa, entre outros aspectos.

Os cientistas então descobriram algo inesperado: as galáxias estão se afastando da Terra!

Para você entender melhor o que está acontecendo, faça várias bolinhas de tinta com uma caneta sobre a borracha de uma bexiga (balão de aniversário) e comece a soprar. Veja o que acontece com a distância entre as marcas de tinta.

A análise da luz das estrelas mostra que as galáxias estão se afastando uma das outras, assim como as marcas feitas na bexiga. Isso acontece porque o Universo, como a bexiga de nosso exemplo, está se expandindo.

Mas se eles está se expandindo, podemos concluir que, no passado as galáxias estavam mais próximas. Quanto mais voltarmos no tempo, mais próximas elas estavam.

Podemos supor, então um momento em que toda a matéria do Universo estava compactada em um único ponto, infinitamente comprida em temperaturas enormes. Foi então o que aconteceu o que os cientistas chamam de "a grande explosão" ou, em inglês, o big-bang. Era o início do Universo, que teria ocorrido há mais ou menos 15 bilhões de anos.

Depois da explosão, a temperatura inicial, que era de mais de um trilhão de graus Celsius, começou a diminuir, e os átomos como formam a matéria hoje, se originaram, a partir dos prótons, elétrons e outras partículas.

Primeiro, os átomos se agruparam em nuvens de gases. Cerca de um bilhão de anos depois, as primeiras estrelas e galáxias surgiram.

E antes do big-bang?

Os cientistas não sabem dizer. Como não havia nem tempo nem espaço antes da grande explosão, alguns acham difícil afirmar que havia alguma coisa anterior. Segundo eles, todo o Universo passou a existir só a partir da grande explosão.

Mas a ciência ainda não tem uma resposta para essa discussão. Como também não tem para o futuro do Universo.


Estrelas

As estrelas "nascem" a partir de nebulosas constituídas, em grande parte, por gases, poeira e partículas sólidas.

Os cientistas explicam que existe uma atração recíproca entre as partículas de matéria que compõe a grande nuvem - a nebulosa. Essa atração é denominada força de gravidade. Em razão da força de gravidade, a matéria que constitui uma nebulosa se agrupa, compondo uma massa compacta e formando os astros.

Alguns astros alcançam um tamanho gigantesco, e a temperatura no seu interior é elevadíssima. A pressão e o aquecimento se tornam tão intensos no centro desses astros que uma grande quantidade de energia é liberada sob forma de calor e luz. Essa propriedade de produzir o próprio calor e a própria luz é o que diferencia as estrelas dos planetas e de outros astros.

O brilho das estrelas é produzido por parte de sua energia, que se irradia pelo espaço sob a forma de luz. As estrelas não duram para sempre. Elas "nascem", evoluem e "morrem". Esse mesmo processo ocorre com o Sol, pois ele também é uma estrela.


Nebulosa

A luz das estrelas

Pode parecer estranho, mas quando olhamos para as estrelas, estamos vendo o passado delas. Se a estrela estiver bem longe, bem longe mesmo, ela pode até nem mais existir da forma como a conhecemos hoje - e inclusive ter se transformado em outro corpo celeste. Quando observamos uma estrela, estamos captando a luz que ela emitiu para o espaço. A luz é uma forma de energia que viaja com a incrível velocidade de cerca de 300 mil quilometros por segundo. Mas como a distância entre os corpos celestes também é grande, pode levar um bom tempo para que a luz da estrela chegue até nós. Veja o exemplo:

A estrela mais próxima de nós depois do Sol, chamada Próxima do Centauro, está a uma distância de 40 trilhões de quilômetros da Terra. Isso quer dizer que a luz dessa estrela leva cerca de 4,2 anos ou 4,2 anos-luz para chegar até aqui. Então quando observamos essa estrela, estamos vendo, nesse momento, a luz que ela emitiu a 4,2 anos. Se, neste momento, essa estrela deixasse de existir ela só "se apagaria", isto é, sua luz deixaria de chegar até nós, daqui a 4,2 anos. Só então perceberíamos que ela deixou de existir.

O brilho das estrelas é ofuscado durante o dia pela luz do Sol que é a estrela mais perto da Terra. Por isso, percebemos as estrelas no céu somente à noite, mas elas permanecem lá durante o dia.

Cor das estrelas

A olho nu, é difícil distinguir a cor das estrelas. Em razão das grandes distâncias que elas estão de nós, a quantidade de luz que chega aos nossos olhos é muito pequena e não percebemos cores quando há pouca luz.

A cor das estrelas depende do calor que chega do núcleo à superfície delas e tem, portanto, relação com a sua temperatura. As estrelas com superfície mais quente apresentam cores branca ou azulada, e aquelas de cor avermelhada são as que têm a superfície menos quente. Com o telescópio é possível observar a cor das estrelas com mais nitidez.

Nas estrelas menos quentes, a temperatura da superfície chega a 3 000ºC, enquanto nas mais quentes chega a 50 000ºC.

O Sol tem a cor amarelada e, comparado com as outras estrelas, possui uma temperatura média.

Porque as estrelas piscam?

Olhando para o céu à noite, podemos ver que o brilho das estrelas muda: elas "piscam". Mas estrelas estão sempre emitindo a mesma luz. O piscar é provocado por mudanças no ar da atmosfera que a luz atravessa.


hoje irei postare sobre o espaço

sexta-feira, 24 de julho de 2009


Reino Plantae ou Metaphyta

As plantas são seres pluricelulares e eucarionetes. Nesses aspectos elas são semelhantes aos animais e a muitos tipos de fungos; entretanto, têm uma característica que as distingue desses seres - são autotróficas. Como já vimos, seres autotróficos são aqueles que produzem o próprio alimento pelo processo da fotossíntese.
Utilizando a luz, ou seja, a energia luminosa, as plantas produzem a glicose, matéria orgânica formada a partir da água e do gás carbônico que obtêm do alimento, e liberam o gás oxigênio.
As plantas, juntamente com outros seres fotossintetizantes, são produtoras de matéria orgânica que nutre a maioria dos seres vivos da Terra, atuando na base das cadeias alimentares. Ao fornecer o gás oxigênio ao ambiente, as plantas também contribuem para a manutenção da vida dos seres que, assim como elas próprias, utilizam esse gás na respiração. As plantas conquistaram quase todos os ambientes da superfície da Terra.
Segundo a hipótese mais aceita, elas evoluíram a partir de ancestrais protistas. Provavelmente, esses ancestrais seriam tipos de algas pertencentes ao grupo dos protistas que se desenvolveram na água. Foram observadas semelhanças entre alguns tipos de clorofila que existem tanto nas algas verdes como nas plantas. A partir dessas e de outras semelhanças, supõe-se que as algas verdes aquáticas são ancestrais diretas das plantas.
Há cerca de 500 milhões de anos, as plantas iniciaram a ocupação do ambiente terrestre. Este ambiente oferece às plantas vantagens como: maior facilidade na captação da luz, já que ela não chega às grandes profundidades da água, e facilidade da troca de gases, devido à maior concentração de gás carbônico e gás oxigênio na atmosfera. Esses fatores são importantes no processo da respiração e da fotossíntese.
Mas e quanto a presença da água, tão necessária à vida?
Ao compararmos o ambiente terrestre com o ambiente aquático, verificamos que no terrestre a quantidade de água sob a forma líquida é bem menor e também que a maior parte dela está acumulada no interior do solo.
Como, então, as plantas sobrevivem no ambiente terrestre? Isso é possivel porque elas apresentam adaptações que lhes possibilitam desenvolver no ambiente terrestre e ocupá-lo eficientemente. As plantas adaptadas ao ambiente terrestre apresentam, por exemplo, estruturas que permitem a absorção de água presente no solo e outras estruturas que impedem a perda excessiva se água. Veremos mais adiante como isso ocorre.
Devemos lembrar que alguns grupos de plantas continuaram sobrevivendo em ambiente aquático.

Classificação das plantas
As plantas cobrem boa parte dos ambientes terrestres do planeta. Vistas em conjunto, como nesta foto, parecem todas iguais. Mas na realidade existem vários tipos de planta e elas ocupam os mais diversos ambientes.

Você já sabe que para classificar, ou seja, organizar diversos objetos ou seres em diferentes grupos, é preciso determinar os critérios através dos quais identificaremos as semelhançase as diferenças entre eles.
Vamos ver agora como as plantas podem ser classificadas.
O reino das plantas é constituído de organismos pluricelulares, eucariontes, autótrofos fotossintetizantes.
É necessário definir outros critérios que possibilitem a classificação das plantas para organizá-las em grupos menos abrangentes que o reino. Em geral, os cientistas consideram como critérios importantes:
a característica da planta ser vascular ou avascular, isto é, a presença ou não de vasos condutores de água e sais minerais (seiva bruta) e matéria orgânica (a seiva elaborada);
ter ou não estruturas reprodutoras (semente, fruto e flor) ou ausência delas.

Os nomes dos grupos de plantas
Criptógama: palavra composta por cripto, que significa escondido, e gama, cujo significado está relacionado a gameta (estrutura reprodutiva). Esta palavra significa, portanto, "planta que tem estrutura reprodutiva escondida". Ou seja, sem semente.
Fanerógama: palavra composta por fanero, que significa visível, e por gama, relativo a gameta. Esta palavra significa, portanto, "planta que tem a estrutura reprodutiva visível". São plantas que possuem semente.
Gimnosperma: palavra composta por gimmno, que significa descoberta, e sperma, semente. Esta palavra significa, portanto, "planta com semente a descoberto" ou "semente nua".
Angiosperma: palavra composta por angion, que significa vaso (que neste caso é o fruto) e sperma, semente. A palavra significa, "planta com semente guardada no interior do fruto".

quarta-feira, 22 de julho de 2009

Eu fiz uma enquete na net(agora indisponivel)sobre as enchentes!Por isso explicarei algo sabres as enchentes!

Segura que lá vem enchente!

Enchente não é sempre aquele desastre que você já deve ter visto na TV: cidades inundadas, pessoas e animais ilhados, gente que perde a casa com tudo dentro.

As enchentes são fenômenos naturais que acontecem em todos os rios.

Na época das chuvas - que ocorre geralmente durante o verão, no sul do Brasil, e durante o inverno, na região norte - os rios enchem e alagam as terras em redor, chamadas áreas naturais de inundação. Isso é bom, porque a água deixa a terra mais fértil para o plantio. Mas a ação do homem mudou o curso natural das coisas...


Antigamente, antes de as cidades se formarem, a água entrava toda na terra. Quando o homem começou a tirar a vegetação e construir casas nas margens dos rios, as enchentes viraram um problemão. Sem as raízes das árvores, que funcionam como esponjas que seguram a água no solo, o volume de água que volta para os rios aumenta muito, e o risco de acontecer uma enchente "desastrosa" aumenta junto.

As coisas pioraram nas cidades, porque os prédios, casas e o asfalto que recobre as ruas tapam o caminho da água até a terra, a chamada "impermeabilização do solo".

O lixo jogado nas ruas também contribui para os alagamentos, porque entope os bueiros e faz os córregos transbordarem.

Quando isso acontece, as pessoas correm maior risco de pegar doenças, já que as águas sobem e carregam esses detritos para ruas e casas, junto com urina de ratos (que provoca uma doença grave chamada leptospirose). Nessas águas estão também os esgotos não canalizados, que em muitas cidades do Brasil são despejados a céu aberto nos córregos, sem nenhum tratamento.


A noz do cerebro?

O que é, o que é: está dentro da sua cabeça, é enrugado e dividido como uma noz gigante, e ajuda você a pensar e a fazer tudo?

É ele: o cérebro! O principal órgão do sistema nervoso, que controla o corpo inteirinho! Ele é o responsável por todas as ações voluntárias e involuntárias do nosso corpo.

As ações voluntárias são aquelas que a gente faz por vontade própria: falar, brincar, mexer um dedinho do pé e muitas outras coisas. Já as ações involuntárias são aquelas que fazemos sem saber, como a respiração e o bater do nosso coração. Isso tudo é obra do trabalho incessante do nosso cérebro!

Ele funciona como uma grande empresa, onde os trabalhadores são as células nervosas, ou neurônios. Essas células processam todas as informações para que o cérebro trabalhe direitinho! Ao contrário da maioria das células de corpo, que morrem e são substituídas por outras, os neurônios não se regeneram: quando morrem, não aparece ninguém para ocupar o seu lugar!

Existem cerca de 100 bilhões dessas "operárias" em 1,4 quilo de massa orgânica (esse é o peso aproximado do cérebro de um adulto!): isso equivale a 2% do peso do corpo. Achou pouco? Pois saiba que, em compensação, o exigente cérebro consome 25% de todo o oxigênio utilizado pelo nosso organismo!


Ola! Faz muito tempo que não posto algo , então hoje irei postar sobre algo chamado ´A noz do cerebro`.

terça-feira, 30 de junho de 2009




Problemas da digestão
Indigestão é uma perturbação das funções digestivas. É muito difício encontrar uma pessoa que alguma vez não teve indigestão, sendo que para a maioria das pessoas não passa de um incômodo passageiro. No entanto, para algumas pessoas os sintomas da indigestão podem ser tão severos que interferem na atividade diária, prejudicando a qualidade de vida.
Na indigestão breve, podemos nos sentir estufados depois de uma refeição opulenta, daí sentirmos certo alívio depois de eliminarmos alguns "arrotos". Uma parte do ar arrotado provém do próprio ar engolido e uma outra parte, significativa, resulta das reações químicas nos estômago e também da ingestão de bebidas gaseificadas.
Uma indigestão mais persistente pode ocasionar graves problemas de saúde que estão ligados à produção excessiva de ácido pelo estômago. Assim, se "a válvula" que separa o esôfago do estômago estiver com problema, o suco produzido pelo estômago pode subir para o esôfago, provocando sensação de "queimação", que pode se irradiar até a garganta. À noite, esse fato costuma ser um problema, pois prejudica o descanso.

O refluxo constante de ácido e pepsina no esôfago pode provocar uma inflamação conhecida como esofagite. Além disso, a indigestão mais persistente pode ocasionar uma doença muito disseminada na população, a úlcera


Úlcera
As úlceras são rupturas na superfície de um órgão ou tecido inflamado ou não. Normalmente, aparecem na parede do estômago, é a doença mais comum do aparelho digestivo. Desenvolve-se em forma de uma cratera esbranquiçada com uma orla avermelhada e áspera. Podem ser rasas ou profundas, do tamanho de uma moeda.
Pode ser provocada pelo desequilíbrio entre a ação do ácido e a proteção da mucosa que reveste o órgão. Seu sintoma mais comum é a dor que aparece aproximadamente de uma a três horas depois das refeições, todos os dias e no mesmo horário. Esta dor pode sumir, mas isso não quer dizer que esta cicatrizou, pois a qualquer momento a dor volta sob forma intensa.
A úlcera pode ser descoberta através de exames de raios-X, endoscopia ou gastroscopia. Pode ainda combinar a biópsia ao exame de gastroscopia para verificar a presença ou não de câncer estomacal. A alimentação de uma pessoa ulcerosa deve ser feita em três pequenas refeições seguidas de refeições leves nos intervalos e antiácidos evitando sempre os alimentos que estimulam a produção de ácido.
O tratamento é feito com antiácidos, antibióticos e com reeducação alimentar. O repouso é um fator importante no tratamento, pois evita o estresse, o cansaço, as tensões e ajuda o estômago a não empurrar os vasos sanguíneos. Em casos graves, a cirurgia é necessária.
Entre metade e um terço da população mundial é portadora da bactéria Helicobacter pylory, uma bactéria lenta que infecta alguns estômagos e pode provocar úlceras e câncer neste local.
Para podermos previnir a doença devemos tomar alguns cuidados alimentares, por exemplo:
diminuir frituras (dar preferência aos cozidos, assados ou grelhados) e alimentos gordurosos em geral, carne vermelha, café, chás e bebidas alcoólicas em demasia;
nas saladas, diminuir ou evitar pimenta, sal e vinagre;
reduzir a ingestão de líquidos às refeições

Vitaminas
As vitaminas são substâncias utilizadas em pequenas doses pelo metabolismo celular. Quase sempre atuam como coenzimas de importantes sistemas enzimáticos do nosso metabolismo. Como não as produzimos - a exceção é a vitamina D, que depende, para sua síntese, de exposição ao Sol, é preciso obtê-las dos alimento que consumimos, freqüentemente crus, uma vez que algumas são muito sensíveis a altas temperaturas, que provocam a sua inativação. As vitaminas de utilização mais freqüentes são divididas em dois grupos:
Lipossolúveis, cuja absorção pelo intestino é facilitada pela existência de lipídios na alimentação. São as vitaminas A, D, E e K;
Hidrossolúveis, as que são absorvidas em solução aquosa. São as vitaminas do complexo B e a vitamina C.
Vitaminas
Principais Fontes
Doenças de Carência
A (Retinol ou Axeroftol)
Vegetais verdes e amarelos; óleo de fígado de peixes; gema de ovo; leite.
Hemeralopia (cegueira noturna), xeroftalmia (cegueira total por ressecamento da córnea), pele seca e escamosa, diminuição da resistência a infecções.
D (Calciferol)
Óleo de fígado de peixes; gema de ovo; produzida na pele pela ação de raios solares.
Raquitismo (encurvamento de ossos por deficiência de cálcio).
E (Alfatocoferol)
Vegetais verdes; óleos vegetais; cereais; fígado bovino.
Anemia (diminuição de glóbulos vermelhos no sangue)
K (Naftoquinona)
Vegetais verdes; produzida por bactérias no intestino.
Enfraquecimento do processo de coagulação sanguínea, levando à hemorragia.
B¹ (Tiamina)
Cereais; legumes; nozes, fígado bovino.
Beribéri (fraqueza e inflamação dos nervos)
B² (Riboflavina)
Leite; hortaliças; ovo; queijo.
Rachamento da pele; deficiência visual.
B³ (Niacina ou nicotinamida)
Carne; cereais; peixes; levedura.
Pelagra (diarréia e lesões cutâneas)
B6 (Piridoxina)
Cereais; gema de ovo; fígado bovino.
Anemia; convulsões (contrações musculares agitadas e desordenadas independentes da vontade).
B¹² (Cianocobalamina)
Fígado bovino; ovos; leite; carnes; peixes; ostras.
Anemia; lesões do sistema nervoso.
C (Ácido ascórbico)
Frutos cítricos e outros (tomate, acerola, camu-camu); batata; hortaliças.
Escorbuto (hemorragias internas e edemas articulares); gengivite; hemorragias nasais.
Biotina
Fígado bovino; leite; cereais; levedura; produzidas por bactérias intestinais.
Fadiga; depressão; náuseas; lesões cutâneas.
Ácido fólico
Hortaliças; germe de trigo; frutos; levedura; fígado bovino.
Anemia
Ácido pantotênico
Carne; cereais; ovos; legumes; levedura; nozes.
Lesões dos sistemas nervoso e digestivo.
A necessidade de Sais Minerais
Cada vez mais fica evidente a importância de certos elementos químicos e substâncias minerais para o metabolismo humano. A tabela abaixo resume os principais elementos químicos necessários ao organismo humano. Dentre eles, os macronutrientes são os que utilizamos em grande quantidade, enquanto os micronutrientes, em pequenas quantidades.
Macronutrientes
Elementos
Fontes principais
Funções principais
Cálcio

Leite, ovos, verduras, cereais integrais.
Fortalecer ossos e dentes; atuar na coagulação do sangue e na contração muscular.
Cloreto (íon Cl-)
Carne, sal de cozinha.
Atuar na digestão (componente do HCl do suco gástrico) e na condução nervosa.
Magnésio
Verduras, Carnes, Cereais integrais, leite, legumes.
Auxiliar do trabalho de muitas enzimas.
Fósforo
Ovos, carnes, cereais integrais.
Constituintes dos ácidos nucléicos e do ATP, constituinte dos ossos, juntamente com o cálcio.
Potássio
Carnes, cereais integrais, frutas, ovos e verduras.
Participar da condução nervosa e da contração muscular.
Sódio
Sal de cozinha, ovos, carnes, verduras.
Participar da condução nervosa e da contração muscular.
Enxofre
Ovos, carnes e legumes.
Participar de importantes aminoácidos; atuar como coenzima.


Micronutrientes
Elementos
Fontes principais
Funções principais
Cromo
Carnes, cereais integrais, levedura de cerveja.
Atuar no metabolismo da glicose.
Cobalto
Carnes.

Essencial para a síntese da Vitamina B12 e para a formação de glóbulos vermelhos.
Cobre
Fígado, peixes, cereais integrais, carnes em geral.
Produção de hemoglobina, ativador de muitas enzimas.
Iodeto (Íon I)
Peixes, mariscos.
Componente dos hormônios tireoidianos.
Fluoreto (Íon F)
Água de abastecimento.
Fortalecer os dentes e prevenir as cáries.
Manganês
Vísceras, cereais integrais, legumes, café, chás.
Ativador de muitas enzimas.
Molibdênio
Vísceras, verduras, cereais integrais, legumes.
Essencial para o funcionamento de algumas enzimas.
Selênio
Carnes, frutos do mar, ovos, cereais integrais.
Participar do metabolismo de gorduras.
Ferro
Fígado, carnes, verduras, ovos, cereais integrais.
Constituintes da hemoglobina.
Zinco
Fígado, peixes, mariscos.
Participar do metabolismo da insulina.



Digestão comparada
Os mamíferos necessitam de uma dieta nutritiva e abundante pois os custos metabólicos da manutenção de temperatura são muito elevados, mas de acordo com o regime alimentar, o tubo digestivo pode apresentar adaptações específicas.
Nos carnívoros o aparelho digestivo é simples pois as proteínas, lípidios e sais minerais que se encontram na carne não necessitam de digestão especializada. Nos onívoros o estômago é um saco de paredes musculosas e com glândulas produtoras de ácido clorídrico e enzimas. A parede do estômago não é destruída por estes fluidos devido à proteção da mucina, outra secreção gástrica. As plantas contêm glícidios complexos, como a celulose. Assim, nos herbívoros o intestino é proporcionalmente maior, pois os vegetais são menos nutritivos e de digestão difícil. Dado que nenhum vertebrado produz enzimas capazes de hidrolisar este polissacáridio muitos herbívoros albergam bactérias em diversos compartimentos, nomeadamente no ceco ou no próprio estômago, que nesse caso é subcompartimentado:
rúmen – onde se localizam as bactérias capazes de fermentar a celulose, que se reproduzem a uma taxa suficientemente elevada para compensar as que são "perdidas" com a deslocação do bolo alimentar. O conteúdo deste compartimento (bactérias e material vegetal) é regurgitado regularmente para a boca, quando o animal, num local seguro, mastiga demoradamente o alimento ingerido apressadamente;
retículo - igualmente rico em bactérias fermentativas, recebe o bolo alimentar depois de remastigado na boca, permitindo uma maior área de ataque às celulases bacterianas;
omaso - a pasta alimentar contendo enorme quantidade de bactérias fermentativas é "concentrada", devido à reabsorção de água;
abomaso - compartimento correspondente ao estômago nos restantes mamíferos, secreta ácidos e proteases que completam a digestão da forma tradicional.
Deste modo, estes animais ingerem maiores quantidades de alimentos, que permanecem muito tempo no tubo digestivo. Este método digestivo é muito eficiente para uma dieta pobre em proteínas, pois as próprias bactérias são igualmente digeridas tornando-se uma fonte de proteínas para o ruminante (uma vaca pode obter cerca de 100 g de proteínas por dia da digestão das suas bactérias endossimbióticas).
Alguns herbívoros não ruminantes, como os coelhos e lebres, também contêm a sua própria flora fermentativa, geralmente em divertículos especializados - ceco. No entanto, como o ceco abre no intestino grosso a absorção de nutrientes digeridos pelos microrganismos é pouco eficaz e incompleta. Para o compensar, muitos destes animais ingerem as suas fezes - coprofagia. Existem geralmente dois tipos de fezes nestes casos, um composto exclusivamente por detritos e outro, que é ingerido diretamente do ânus, composto por material cecal, que irá então passar pelo estômago e intestino delgado, sendo os seus nutrientes absorvidos.
O dióxido de carbono e o metano são produtos secundários do metabolismo fermentativo destas bactérias, podendo um ruminante típico (uma vaca, por exemplo) produzir até 400 litros de metano por dia. Este fato torna o gado doméstico a segunda mais importante causa do efeito de estufa na Terra (logo após a industria).
O tamanho do animal é decisivo no tipo de dieta, e, logo, no tipo de sistema digestivo que irá apresentar. Nos pequenos mamíferos a razão área/volume é elevada, significando que perdem grande quantidade de calor para o meio. Assim, devem apresentar grandes necessidades calóricas e metabolismo elevado. Como não poderão tolerar uma digestão lenta como a dos herbívoros, os mamíferos com menos de 500 g são quase todos insectívoros.
Pelo contrário, os mamíferos de maior porte geram mais calor e perdem menos calor, tolerando um processo de recolha de alimento mais demorado (carnívoros que atacam presas de grande porte) ou uma digestão lenta (herbívoros).

Além disso, animais com mais de 500 g não conseguiriam recolher uma quantidade de insetos suficiente durante o dia. A única exceção são os mamíferos que se alimentam de grandes quantidades de insetos coloniais (formigas ou térmitas).
O tubo digestivo humano pode ser considerado típico da classe dos mamíferos. O alimento introduzido na boca progride no tubo pelos movimentos peristálticos involuntários. Embora a digestão se inicie na boca, é no estômago e intestino delgado que ela se processa, com intervenção de grande variedade de enzimas. Estas são produzidas por glândulas gástricas e intestinais, além de órgãos anexos como as glândulas salivares, pâncreas e fígado (a bílis não apresenta, no entanto, enzimas). A absorção é facilitada pela presença no intestino delgado de pregas cobertas com vilosidades intestinais em forma de dedo de luva, cujas células epiteliais ainda apresentam microvilosidades. Todo este conjunto aumenta grandemente a área de contato entre os alimentos e a parede, facilitando a absorção, que se realiza por difusão ou por transporte ativo.
Animal
Habitat
Tubo digestivo
Compartimentos
Órgãos anexos
Tipo de digestão
Platelmintes
Água doce
Incompleto
Cavidade gastrovascular
-
Intra e extracelular
Anelídeos
Aquático ou terrestre
Completo
Faringe, esôfago, papo, moela, intestino com tiflosole
-
Extracelular
Insetos
Terrestre
Completo
Faringe, esôfago, papo, estômago, intestino e reto
Glândulas salivares, cecos gástricos
Extracelular
Peixes cartilaginosos
Água salgada
Completo
Faringe, esôfago, estômago, intestino delgado e intestino grosso
Glândulas salivares, fígado e pâncreas
Extracelular
Peixes ósseos
Aquático
Completo
Faringe, esôfago, estômago, intestino delgado e intestino grosso
Fígado e pâncreas
Extracelular
Anfíbios
Água doce e terrestre
Completo
Faringe, esôfago, estômago, intestino delgado e intestino grosso
Fígado e pâncreas
Extracelular
Répteis
Terrestre
Completo
Faringe, esôfago, estômago, intestino delgado e intestino grosso
Glândulas salivares, fígado e pâncreas
Extracelular
Aves
Terrestre
Completo
Faringe, esôfago, papo, proventrículo, moela, intestino delgado e intestino grosso
Glândulas salivares, cecos intestinais, fígado e pâncreas
Extracelular
Mamíferos
Aquático ou terrestre
Completo
Faringe, esôfago, estômago, intestino delgado e intestino grosso
Glândulas salivares, cecos intestinais, fígado e pâncreas
Extracelular



O suco entérico
O suco entérico (ou intestinal) é produzido pelas células da parede do intestino delgado. Em sua composição, existem muco e enzimas que deverão completar a digestão dos alimentos. As principais enzimas presentes são:
sacarase, que atua na digestão da sacarose, liberando glicose e frutose;
lactase, que atua na lactose (dissacarídeo presente no leite), desdobrando-a em galactose e glicose;
maltase, que atua nas moléculas de maltose formadas na digestão prévia doa amido, liberando moléculas de glicose;
nucleotidases, que atuam nos nucleotídeos formados na digestão dos ácidos nucléicos, liberando pentoses, fosfatos e bases nitrogenadas;
peptidases, que atuam nos peptídeos, levando à liberação de aminoácidos.

Hormônios
Durante a digestão, ocorre a formação de certos hormônios. Veja na tabela abaixo, os principais hormônios relacionados à digestão:
Hormônio
Fonte
Estímulo
Modo de ação
Gastrina
Estômago
contato de alimentos protéicos com as paredes do estômago
eastimula a secreção de suco gástrico e a contração da musculatura estomacal
Secretina
Intestino delgado
contato do HCl estomacal com o duodeno
estimula o pâncreas a produzir suco rico em bicarbonato e o fígado a secretar bile
Pancreozimina
Intestino delgado
contato com a parede duodenal
estimula a procução de suco pancreático
Colecistoquinina
Intestino delgado
contato de lipídios e aminoácidos na parede duodenal
estimula a liberação de enzimas digestivas e liberado a bile no duodeno
Enterogastrona
Intestino delgado
presença de gordura no intestino delgado
inibe a secreção de suco gástrico bem como a motilidade do estômago
Absorção de nutrientes no intestino delgado
O álcool etílico, alguns sais e a água, podem ser absorvidos diretamente no estômago. A maioria dos nutrientes são absorvidos pela mucosa do intestino delgado, de onde passa para a corrente sanguínea.
Aminoácidos e açúcares atravessam as células do revestimento intestinal e passam para o sangue, que se encarrega de distribuí-los a todas as células do corpo. O glicerol e os ácidos graxos resultantes da digestão de lipídios são absorvidos pelas células intestinais, onde são convertidos em lipídios e agrupados, formando pequenos grãos, que são secretados nos vasos linfáticos das vilosidades intestinais, atingindo a corrente sanguínea.
Depois de uma refeição rica em gorduras, o sangue fica com aparência leitosa, devido ao grande número de gotículas de lipídios. Após uma refeição rica em açúcares, a glicose em excesso presente no sangue é absorvida pelas células hepáticas e transformada em glicogênio e sendo convertida em glicose novamente assim que a taxa de glicose no sangue cai.

Absorção de água e de sais

Os restos de uma refeição levam cerca de nove horas para chegar ao intestino grosso, onde permanece por três dias aproximadamente. Durante este período, parte da água e sais é absorvida. Na região final do cólon, a massa fecal (ou de resíduos), se solidifica, transformando-se em fezes. Cerca de 30% da parte sólida das fezes é constituída por bactérias vivas e mortas e os 70% são constituídos por sais, muco, fibras, celulose e outros não digeridos. A cor e estrutura das fezes são devido à presença de pigmentos provenientes da bile.
Flora intestinal
No intestino grosso proliferam diversos tipos de bactérias, muitas mantendo relações amistosas, produzindo as vitaminas K e B12, riboflavina, tiamina, em troca do abrigo e alimento de nosso intestino. Essas bactérias úteis constituem nossa flora intestinal e evitam a proliferação de bactérias patogênicas que poderiam causar doenças.

Defecação
O reto, parte final do intestino grosso, fica geralmente vazio, enchendo-se de fezes pouco antes da defecação. A distensão provocada pela presença de fezes estimula terminações nervosas do reto, permitindo a expulsão de fezes, processo denominado defecação.
Resumo:
Suco digestivo
Enzima
pH ótimo
Substrato
Produtos
Saliva
Ptialina
neutro
polissacarídeos
maltose
Suco gástrico
Pepsina
ácido
proteínas
oligopeptídeos
Suco pancreático
Quimiotripsina
Tripsina
Amilopepsina
Rnase
Dnase
Lipase
alcalino
alcalino
alcalino
alcalino
alcalino
alcalino
proteínas
proteínas
polissacarídeos
RNA
DNA
lipídeos
peptídeos
peptídeos
maltose
ribonucleotídeos
desoxirribonucleotídeos
glicerol e ácidos graxos
Suco intestinal ou entérico
Carboxipeptidase
Aminopeptidase
Dipeptidase
Maltase
Sacarase
Lactase
alcalino
alcalino
alcalino
alcalino
alcalino
alcalino
oligopeptídeos
oligopeptídeos
dipeptídeos
maltose
sacarose
lactose
aminoácidos
aminoácidos
aminoácidos
glicose
glicose e frutose
glicose e galactose






Saliva e peristaltismo
A amilase salivar digere o amido e outros polissacarídeos (como o glicogênio), reduzindo-os em moléculas de maltose (dissacarídeo). Os sais, na saliva, neutralizam substâncias ácidas e mantêm, na boca, um pH levemente ácido (6, 7), ideal para a ação da ptialina. O alimento, que se transforma em bolo alimentar, é empurrado pela língua para o fundo da faringe, sendo encaminhado para o esôfago, impulsionado pelas ondas peristálticas (como mostra a figura a baixo), levando entre 5 e 10 segundos para percorrer o esôfago.
Através dos peristaltismo, você pode ficar de cabeça para baixo e, mesmo assim, seu alimento chegará ao intestino.
Entra em ação um mecanismo para fechar a laringe, evitando que o alimento penetre nas vias respiratórias. Quando a cárdia (anel muscular, esfíncter) se relaxa, permite a passagem do alimento para o interior do estômago.
Estômago e suco gástrico
No estômago, o alimento é misturado com a secreção estomacal, o suco gástrico (solução rica em ácido clorídrico e em enzimas (pepsina e renina).

A pepsina decompõem as proteínas em peptídeos pequenos. A renina, produzida em grande quantidade no estômago de recém-nascidos, separa o leite em frações líquidas e sólidas. Apesar de estarem protegidas por uma densa camada de muco, as células da mucosa estomacal são continuamente lesadas e mortas pela ação do suco gástrico. Por isso, a mucosa está sempre sendo regenerada. Estima-se que nossa superfície estomacal seja totalmente reconstituída a cada três dias.
O estômago produz cerca de três litros de suco gástrico por dia. O alimento pode permanecer no estômago por até quatro horas ou mais e se mistura ao suco gástrico auxiliado pelas contrações da musculatura estomacal. O bolo alimentar transforma-se em uma massa acidificada e semi-líquida, o quimo. Passando por um esfíncter muscular (o piloro), o quimo vai sendo, aos poucos, liberado no intestino delgado, onde ocorre a parte mais importante da digestão.

Intestino delgado, suco pancreático e bile
O intestino delgado é dividido em três regiões: duodeno, jejuno e íleo. A digestão do quimo ocorre predominantemente no duodeno e nas primeiras porções do jejuno. No duodeno atua também o suco pancreático, produzido pelo pâncreas, que contêm diversas enzimas digestivas. Outra secreção que atua no duodeno é a bile, produzida no fígado, que apesar de não conter enzimas, tem a importante função, entre outras, de transformar gorduras em gotículas microscópicas.
O suco pancreático
O pâncreas secreta o suco pancreático, uma solução alcalina formada por sais (dentre eles o bicarbonato de sódio), água e diversas enzimas, cujas principais são:

tripsina e quimiotripsina, duas proteases que desdobrem as proteínas em peptídeos. Essas enzimas são liberadas pelo pâncreas na forma inativa de tripsinogênio e quimotripsinogênio, respectivamente;
lipase pancreática, que atua na digestão de lipídios (triglicerídeos);
amilase pancreática (ou amilopsina) que atua sobre o amido, transformando-o em maltose;
diversas peptidases, que rompem ligações peptídicas existentes nos peptídeos formados na digestão de proteínas, levando à liberação de aminoácidos;
nucleases, que digerem ácidos nucléicos.

Bile: ação física na digestão dos lipídeos
A bile é um líquido esverdeado produzido no fígado. Não contém enzimas digestivas. É rica em água e sais minerais de natureza alcalina. É armazenada na vesícula biliar, onde é concentrada para posterior liberação no intestino delgado.
A ação da bile no processo digestivo é física. Age como um detergente e provoca a emulsificação das gorduras ao reduzir a tensão superficial existente entre as moléculas lipídicas. Isso promove a formação de gotículas, o que aumenta a superfície total de exposição dos lipídios, favorecendo, assim, a ação das lípases.






Digestão
Nos seres unicelulares, todos os problemas de sobrevivência são resolvidos pela única célula. Nos pluricelulares, a execução de todas as tarefas relacionadas à sobrevivência é dificultada pelo grande número de células. Nem todas ficam próximas das fontes de alimento e oxigênio. A distância das células mais internas em relação ao meio ambiente é grande. A remoção das excretas passa a ser trabalhosa. A divisão do trabalho, exercida por diferentes tecidos e sistemas, passou a ser uma das principais características desses seres.
A adaptação à vida pluricelular envolveu, então, a organização de diferentes sistemas, cada qual destinado a determinada tarefa, mas todos mantendo relações de interdependência a fim de exercerem eficazmente suas funções.

Digestão: Quebra de Alimentos
Digestão: é o processo de transformação de moléculas de grande tamanho, por hidrólise enzimática, liberando unidades menores que possam ser absorvidas e utilizadas pelas células.
Dessa forma, proteínas, gorduras e carboidratos, por exemplo, são desdobrados em aminoácidos, ácidos graxos e glicerol, glicose e outros monossacarídeos, respectivamente.

Dois tipos de digestão: Extra e Intracelular
Nos protozoários, a digestão do alimento deve ser efetuada no interior da célula, caracterizando o processo de digestão intracelular. De modo geral, são formados vacúolos digestivos no interior dos quais a digestão é processada.

Nos animais pluricelulares mais simples, como as esponjas, a digestão é exclusivamente intracelular e ocorre no interior de células especiais conhecidas como coanócitos e amebócitos. Nos celenterados e platelmintos, já existe uma cavidade digestiva incompleta, isto é, como uma única abertura - a boca. Nesses animais, mas o término ainda é intracelular.
À medida que os grupos animais ficam mais complexos, a digestão ocorre exclusivamente na cavidade digestiva, ou seja, é totalmente extracelular. É o que acontece a partir dos nematelmintos, nos quais a eficiência do processo digestivo garante a fragmentação total do alimento na cavidade digestiva.
Os resíduos alimentares não digeridos são eliminados pelos ânus. Os primeiros animais com cavidade digestiva completa (boca e ânus) pertencem ao grupo dos nematelmintos.
No homem e em todos os vertebrados, a digestão é extracelular e ocorre inteiramente na cavidade do tubo digestório.

Características do Sistema Digestório
O tubo digestivo humano apresenta as seguintes regiões; boca, faringe, esôfago, estômago, intestino delgado, intestino grosso e ânus. A parede do tubo digestivo tem a mesma estrutura da boca ao ânus, sendo formada por quatro camadas: mucosa, submucosa, muscular e adventícia.
Os dentes e a língua preparam o alimento para a digestão, por meio da mastigação, os dentes reduzem os alimentos em pequenos pedaços, misturando-os à saliva, o que irá facilitar a futura ação das enzimas. A língua movimenta o alimento empurrando-o em direção a garganta, para que seja engolido. Na superfície da língua existem dezenas de papilas gustativas, cujas células sensoriais percebem os quatro sabores primários: doce, azedo, salgado e amargo.
A presença de alimento na boca, como sua visão e cheiro, estimula as glândulas salivares a secretar saliva, que contém a enzima amilase salivar ou ptialina, além de sais e outras substâncias.
nessa semana postarei sobre fisiologia animal

segunda-feira, 29 de junho de 2009

me desculpem por ter nao postado mais.
nao tive tempo

agora curtam minhas novas postagens

sábado, 20 de junho de 2009

Espero que gostem das minhas postagens! Segunda-Feira virao mais postagens!(Atençao os que sao meus seguidores tem que amarem como eu biologia)

A poluição
A poluição do ar é definida como sendo a degradação da qualidade do ar como resultado de atividades que direta ou indiretamente:
Prejudiquem a saúde, a segurança e o bem-estar da população;
criem condições adversas às atividades sociais e econômicas;
afetem desfavoravelmente a biota (organismos vivos);
afetem as condições estéticas ou sanitárias do meio ambiente;
lancem matérias ou energia em desacordo com os padrões ambientais estabelecidos em leis federais [Lei Federal no 6938, de 31 de agosto de 1981, regulamentada pelo decreto no 88 351/83].
Poluição e sua fontePara facilitar o estudo do assunto, identificamos quatro tipos principais de poluição do ar, segundo as fontes poluidoras.
Poluição de origem natural: resultante de processos naturais como poeiras, nevoeiros marinhos, poeiras de origem extra terrestre, cinzas provenientes de queimadas de campos, gases vulcânicos, pólen vegetal, odores ligados à putrefação ou fermentação natural, entre outros.
Poluição relacionada aos transportes: resultante da ação de veículos automotores e aviões. Devido a combustão da gasolina, óleo diesel, álcool etc., os veículos automotores eliminam gases como o monóxido de carbono, óxido de enxofre, gases sulfurosos, produtos à base de chumbo, cloro, bromo e fósforo, além de diversos hidrocarbonetos não queimados. Variando de acordo com o tipo de motor, os aviões eliminam para a atmosfera: cobre, dióxido de carbono, monoaldeídos, benzeno etc.
Poluição pela combustão: resultante de fontes de aquecimento domésticos e de incinerações, cujos agentes poluentes são: dióxido de carbono, monóxido de carbono, aldeídos, hidrocarbonetos não queimados, compostos de enxofre. O anidrido sulfuroso, por exemplo, pode transformar-se em anidrido sulfúrico, e este, em ácido sulfúrico, que precipita juntamente com as águas das chuvas.
Poluição devida às indústrias: resultante dos resíduos de siderúrgicas, fábricas de cimento e de coque, indústrias químicas, usinas de gás e fundição de metais ferrosos. Entre esses resíduos encontram-se substâncias tóxicas e irritantes, poluentes fotoquímicos, poeiras etc. Além da poeira de natureza química, com grãos de tamanho dos mais diferentes, os principais poluentes industriais encontram-se no estado gasoso, sendo que os mais freqüentes são: dióxido de carbono, monóxido de carbono, óxido de nitrogênio, compostos fluorados, anidrido sulfuroso, fenóis e álcoois de odores desagradáveis.
Inversão térmicaUm fenômeno interessante na atmosfera é o da inversão térmica, ocasião na qual a ação dos poluentes do ar pode ser bastante agravada. A coisa funciona assim: normalmente, o ar próximo à superfície do solo está em constante movimento vertical, devido ao processo convectivo (correntes de convecção). A radiação solar aquece a superfície do solo e este, por sua vez, aquece o ar que o banha; este ar quente é menos denso que o ar frio, desse modo, o ar quente sobe (movimento vertical ascendente) e o ar frio, mais denso, desce (movimento vertical descendente). Este ar frio que toca a superfície do solo, recebendo calor dele, esquenta, fica menos denso, sobe, dando lugar a um novo movimento descendente de ar frio. E o ciclo se repete. O normal, portanto, é que se tenha ar quente numa camada próxima ao solo, ar frio numa camada logo acima desta e ar ainda mais frio em camadas mais altas porém, em constantes trocas por correntes de convecção. Esta situação normal do ar colabora com a dispersão da poluição local.
Na inversão térmica, condições desfavoráveis podem, entretanto, provocar uma alteração na disposição das camadas na atmosfera. Geralmente no inverno, pode ocorrer um rápido resfriamento do solo ou um rápido aquecimento das camadas atmosféricas superiores. Quando isso ocorre, o ar quente ficando por cima da camada de ar frio, passa a funcionar como um bloqueio, não permitindo os movimentos verticais de convecção: o ar frio próximo ao solo não sobe porque é o mais denso e o ar quente que lhe está por cima não desce, porque é o menos denso. Acontecendo isso, as fumaças e os gases produzidos pelas chaminés e pelos veículos não se dispersam pelas correntes verticais. Os rolos de fumaça das chaminés assumem posição horizontal, ficando nas proximidades do solo. A cidade fica envolta numa “neblina” e conseqüentemente a concentração de substâncias tóxicas aumenta muito.

A poluição do ar e a nossa saúde
Como já vimos, a camada de ar que fica em contato com a superfície da Terra recebe o nome de troposfera que tem uma espessura entre 8 e 16 km. Devido aos fatores naturais, tais como as erupções vulcânicas, o relevo, a vegetação, os oceanos, os rios e aos fatores humanos como as indústrias, as cidades, a agricultura e o próprio homem, o ar sofre, até uma altura de 3 km, influências nas suas características básicas.
Todas as camadas que constituem nossa atmosfera possuem características próprias e importantes para a proteção da terra. Acima dos 25 km, por exemplo, existe uma concentração de ozônio (O3) que funciona como um filtro, impedindo a passagem de algumas radiações prejudiciais à vida. Os raios ultravioletas que em grandes quantidades poderiam eliminar a vida são, em boa parte, filtrados por esta camada de ozônio. A parcela dos raios ultravioletas que chegam à terra é benéfica tanto para a eliminação de bactérias como na prevenção de doenças. Nosso ar atmosférico não foi sempre assim como é hoje, apresentou variações através dos tempos. Provavelmente o ar que envolvia a Terra, primitivamente, era formado de gás metano (CH4), amônia (NH3), vapor d’água e hidrogênio (H2). Com o aparecimento dos seres vivos, principalmente os vegetais, a atmosfera foi sendo modificada. Atualmente, como já sabemos, o ar é formado de aproximadamente 78% de nitrogênio (N2), 21% de oxigênio, 0,03% de gás carbônico (CO2) e ainda gases nobres e vapor de água. Esta composição apresenta variações de acordo com a altitude.

Fatores que provocam alterações no arA alteração na constituição química do ar através dos tempos indica que o ar continua se modificando na medida em que o homem promove alterações no meio ambiente. Até agora esta mistura gasosa e transparente tem permitido a filtragem dos raios solares e a retenção do calor, fundamentais à vida. Pode-se dizer, no entanto, que a vida na Terra depende da conservação e até da melhoria das características atuais do ar.
Os principais fatores que têm contribuído para provocar alterações no ar são:
A poluição atmosférica pelas indústrias, que em algumas regiões já tem provocado a diminuição da transparência do ar;
o aumento do número de aviões supersônicos que, por voarem em grandes altitudes, alteram a camada de ozônio;
os desmatamentos, que diminuindo as áreas verdes causam uma diminuição na produção de oxigênio;
as explosões atômicas experimentais, que liberam na atmosfera grande quantidade de gases, de resíduos sólidos e de energia;
os automóveis e indústrias, que consomem oxigênio e liberam grandes quantidades de monóxido de carbono (CO) e dióxido de carbono (CO2).
Todos estes fatores, quando associados, colocam em risco o equilíbrio total do planeta, podendo provocar entre outros fenômenos, o chamado efeito estufa, que pode provocar um sério aumento da temperatura da terra, o que levará a graves conseqüências.

O efeito estufa
Graças ao efeito estufa, a temperatura da Terra se mantém, em média, em torno de 15ºC, o que é favorável à vida no planeta. Sem esse aquecimento nosso planeta seria muito frio.
O nome estufa tem origem nas estufas de vidro, em que se cultivam certas plantas, e a luz do Sol atravessa o vidro aquecendo o interior do ambiente. Apenas parte do calor consegue atravessar o vidro, saindo da estufa. De modo semelhante ao vidro da estufa, a atmosfera deixa passar raios de Sol que aquecem a Terra. Uma parte desse calor volta e escapa para o espaço, atravessando a atmosfera, enquanto outra parte é absorvida por gases atmosféricos (como o gás carbônico) e volta para a Terra, mantendo-a aquecida.
No entanto, desde o surgimento das primeiras indústrias, no século XVIII, tem aumentado a quantidade de gás carbônico liberado para a atmosfera.
A atmosfera fica saturada com esse tipo de gás, que provoca o agravamento do efeito estufa. Cientistas e ambientalistas têm alertado para esse fenômeno que parece ser a principal causa do aquecimento global.
Observe abaixo um esquema do efeito estufa.
O gás carbônico e outros gases permitem a passagem da luz do Sol, mas retêm o calor por ele gerado.
A queima de combustíveis fósseis e outros processos provocam acúmulo de gás carbônico no ar, aumentando o efeito estufa.
Por meio da fotossíntese de plantas e algas, ocorre a remoção de parte do gás carbônico do ar.



Estações meteorológicas
Nas estações meteorológicas são registradas e analisadas as variações das condições atmosféricas por meio de equipamentos dos quais fazem uso, como termômetros, higrômetros, anemômetros, pluviômetros, etc.
Nessas estações trabalham os meteorologistas, profissionais que estudam, entre outras coisas, as condições atmosféricas. Os meteorologistas contam com as informações captadas por satélites meteorológicos e radiossondas.
Os satélites meteorológicos são localizados em vários pontos do espaço, captam imagens da superfície e das camadas atmosféricas da Terra e podem mostrar a formação e o deslocamento das nuvens e das frentes frias ou quentes.
As radiossondas são aparelhos que emitem sinais de rádio. São transportados por balões e sua função é medir a pressão, a umidade, e a temperatura das camadas altas da atmosfera. Há aviões que também coletam e enviam informações sobre as condições do tempo.
Das estações meteorológicas, os técnicos enviam os dados das condições do tempo para os distritos ou institutos meteorológicos a fim de fazer as previsões do tempo para as diversas regiões.
No Brasil há o Inmet - Instituto Nacional de Meteorologia e o Inpe - Instituto Nacional de Pesquisas Espaciais, onde se fazem previsões que exigem maior precisão de dados.
As informações sobre o tempo nas diversas regiões do Brasil, divulgadas pelos noticiários, são obtidas junto a esses institutos ou de outros similares.

Temperatura do ar
A temperatura do ar é medida por meio de termômetros. Os boletins meteorológicos costumam indicar as temperaturas máxima e mínima previstas para um determinado período.
O vapor de água presente no ar ajuda a reter calor. Assim verificamos que, em lugares mais secos, há menor retenção de calor na atmosfera e a diferença entre temperatura máxima e mínima é maior. Simplificando, podemos dizer que nesses locais pode fazer muito calor durante o dia, graças ao Sol, mas frio à noite como, por exemplo, os desertos e a caatinga.

Roupas típicas de habitantes dos desertos costumam ser de lã, um ótimo isolante térmico, que protege tanto do frio quanto do calor excessivo. Além disso, as roupas são bem folgadas no corpo, com espaço suficiente para criar o isolamento térmico.

Umidade do ar
A umidade do ar diz respeito à quantidade de vapor de água presente na atmosfera - o que caracteriza se o ar é seco ou úmido - e varia de um dia para o outro. A alta quantidade de vapor de água na atmosfera favorece a ocorrência de chuvas. Já com a umidade do ar baixa, é difícil chover.
Quando falamos de umidade relativa, comparamos a umidade real, que é verificada por aparelhos como o higrômetro, e o valor teórico, estimado para aquelas condições. A umidade relativa pode variar de 0% (ausência de vapor de água no ar) a 100% (quantidade máxima de vapor de água que o ar pode dissolver, indicando que o ar está saturado).
Em regiões onde a umidade relativa do ar se mantém muito baixa por longos períodos, as chuvas são escassas. Isso caracteriza uma região de clima seco.
A atmosfera com umidade do ar muito alta é um fator que favorece a ocorrência de chuva. Quem mora, por exemplo em Manaus sabe bem disso. Com clima úmido, na capital amazonense o tempo é freqüentemente chuvoso.
Como já vimos, a umidade do ar muito baixa causa clima seco e escassez de chuvas.
De acordo com a OMS (Organização Mundial da Saúde), valores de umidade abaixo de 20% oferecem risco à saúde, sendo recomendável a suspensão de atividades físicas, principalmente das 10 às 15horas. A baixa umidade do ar, entre outros efeitos no nosso organismo pode provocar sangramento nasal, em função do ressecamento das mucosas.
No entanto, também é comum as pessoas não se sentirem bem em dias quentes e em lugares com umidade do ar elevada. Isso acontece porque, com o ar saturado de vapor de água, a evaporação do suor do corpo se torna difícil, inibindo a perda de calor. E nosso corpo se refresca quando o suor que eliminamos evapora, retirando calor da pele.

Nível pluviométrico/ quantidade de chuva
A quantidade de chuva é medida pelo pluviômetro. Nesse aparelho, a chuva é recolhida por um funil no alto de um tambor e medida em um cilindro graduado.
A quantidade de chuva é medida no pluviômetro em milímetros: um milímetro de chuva corresponde a 1 litro de água por metro quadrado. Quando se diz, por exemplo, que ontem o índice pluviométrico, ou da chuva, foi de 5 milímetros na cidade de Porto Alegre, significa que se a água dessa chuva tivesse sido recolhida numa piscina ou em qualquer recipiente fechado, teria se formado uma camada de água com 5 milímetros de altura.
Os meteorologistas dizem que a chuva é leve quando há precipitação de menos de 0,5mm em uma hora; ela é forte quando excede os 4mm.
Pressão atmosférica
A pressão atmosférica está relacionada à umidade do ar. Quanto mais seco estiver o ar, maior será o valor desta pressão.
A diminuição da pressão atmosférica indica aumento da umidade do ar, que, por sua vez, indica a possibilidade de chuva. A pressão atmosférica é medida pelo barômetro.

Seguidores

Arquivo do blog